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Background

* Financial problems of pension funds are
serious.

-- Increase contribution rate
-- Decrease retirement benefit

-- Enhance investment return of
pension fund



Prediction of Aging Population
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Prediction of Pension Fund
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Purpose

e Construct a good asset model—a multivariate jump
diffusion (MJD) model.

* Choose objective functions for fund management.

* The proposed MJD model provides more detailed
information about the financial crisis.

* Allow fund managers to determine an appropriate
asset allocation strategy that enhances investment
performance during the crisis.
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Multivariate Lévy processes

* One way to incorporates both kurtosis
and skewness for the probability
distribution of assets returns is
multivariate Lévy processes.



The first goal of this paper

Luciano and Schoutens (2010) provide a multivariate time-
changing model that incorporates both a time transform
common to all assets and an idiosyncratic one for
multivariate compound Poisson processes with zero-mean

jump size.

In this article, different from Luciano and Semeraro
(2010), we construct generalized multivariate compound
Poisson processes with nonzero-mean jump size and
multivariate jump diffusion processes that integrate
idiosyncratic and systematic jumps simultaneously.



Fund Management

Assume a fund invests in three stock indices:
NASDAQ100, DAX and FTSE100.

Choose a feasible investment strategy that minimizes
the discounted future cost.

Derive a first approximation of the optimal
multiperiod asset allocation at the beginning of the
term.

Reassess the optimal investment strategy at every
decision date, which then takes all new information
into account at each decision date

Revises the optimal asset allocation for the rest of

wthe periods until maturity.
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Objective Function

@ V(3,) = min E(G(O)]I,)
%5

where {m,} = {w(s);s=t,t+1,..,n—1}
represents the set of the future possible
Investment strategies

@ G(t) = Y= v C(w)

@ C(t) = 8,(F'(t) — F(t))* + x(F*(t) — F(1)),
1[0] o A SR
where 8, =1,fort=1,...,n—1and 8, =6



Parameter Calibration

With data from January 1, 1996, to December 31, 2010, we
empirically test the stock indices using the MN and MJD models. In
the empirical results.

The calibrated parameters rely on a rolling window sample
procedure, fixed at ten years.

The first rolling sample included stock index returns from January 1,
1996, to December 31, 2005.

Both the MN and MJD models are re-estimated every quarter to
update the distribution parameters of each model.

The estimated sample can be rolled forward by omitting the returns
for the oldest quarter and adding the returns for the latest quarter.

This procedure repeats until the final sample, which ranges from
October 1, 2001, to September 30, 2010.

Therefore, there are 20 parameter sets for the MN and MJD
models.



Simulation Procedure for Optimal
Portfolio Asset Allocation

e Step 1: With terminal data of thejth time period,
forj=1, ..., n, and using the stock indices in the
terminal data as the initial stock indices, we
generate the additional 21 —j stock prices as the
stock indices in adjacent quarters for each
simulated path, using the calibrated parameters
of the MN and MJD models. For this research, we
generate 10,000 simulated paths.



Simulation Procedure for Optimal
Portfolio Asset Allocation

e Step 2: With the simulated paths, we obtain
the optimal multiperiod asset allocations for
each quarter by minimizing the objective
function.



Simulation Procedure for Optimal
Portfolio Asset Allocation

* Step 3: We choose the weights for the first
quarter in the optimal multiperiod asset

allocations as the optimal weights in thejth
time period forj =1, ..., n. Then we take all
new information into account in each quarter
and revise the optimal asset allocation for the
rest of the periods at each quarter until
maturity.



Comparing Two Stochastic
Investment Models

@ Multi-Asset Model: Multivariate Normal
Process

@ Multi-Asset Model: Multivariate Jump
Diffusion Processes



Different cases of asset model and
objective strategies

Case 4

Case 5

Case 6
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The real fund values of the out-of-sample
performance for these six cases and the target
fund values during the 20 quarters

- 20060331 [ 20060930 | 20070331 ( 20070930 | 20080331 - 20090331 | 20090930 | 20100331 ( 20100930

Fund Value (Case 1) 105.39 103.52 111.16 118.94 103.79 89.16 63.66 85.20 93.91 91.06

Fund Value (Case 2) 101.81 98.14 107.91 123.78 107.08

Fund Value (Case 3) 105.48 103.72 112.67 122.20 106.33 91.29 64.59 86.9 95.72 92.91

Fund Value (Case 4) 105.44 103.81 111.27 119.44 104.39 88.84 59.04 79.52 86.77 88.28

Fund Value (Case 5) 101.41 97.60 105.79 123.48 106.84

Fund Value (Case 6) 105.86 104.19 112.67 122.79 106.92 91.05 60.29 81.20 88.61 90.15
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Optimal proportion : Case 1 vs Case 3(termial matching)
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Optimal proportion : Case 3 vs Case 6
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Optimal proportion : Case 1 vs Case 2(downside risk)
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Conclusions

* Investment Strategy
* Asset Models

* Objective Functions
* Asset Selections
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